oh-myyy-ribbon
chime-experiment.ca

It lasts just milliseconds, but it could be a turning point in space research. Since July, Canada’s CHIME Telescope has received Fast Radio Bursts (FRB) from across the universe. It may be the first time Earth has received a signal from an alien civilization — or the cry of a dying star.

The Canadian Hydrogen Intensity Mapping Experiment in British Columbia began operations in 2017, with the overarching goal of collecting data about dark energy, the mysterious force that comprises 70% of the universe. More specifically, the journal Nature describes CHIME’s mission as “[mapping] the density of interstellar hydrogen across the Universe in the epoch between 10 billion and 8 billion years ago.” Part of the data collected includes FRB. Since the first transmission in July, many more FRB have been received by the CHIME telescope, but researchers can’t say where they’re coming from or what might be sending them.

Keep reading... Show less

The Universe is huge. Because it is expanding and that expansion is accelerating, estimates have it stretching up to 93 billion light-years across, though the visible universe is only a mere 13.8 billion light-years across. This means most of the Universe will remain invisible, as its distant light has not had enough time to reach Earth. The Universe has very low density precisely because of its size. On average, a cubic meter of space contains only 5.9 atoms. The density of matter in the Universe, however, is only one atom per every four cubic meters of space. Matter itself is mostly empty space too; a typical atom is 100,000 times larger than its nucleus, and the nucleus contains 99.9 percent of an atom’s mass.

Researchers now believe they have found more than half of the Universe’s missing baryonic matter.

Keep reading... Show less
Neutron star collison.

We are made of star stuff. With the exception of hydrogen and some helium, all the elements that we know and are made of were forged in the hot cores of giant stars billions of years ago. This includes carbon, nitrogen, oxygen and iron. Now, scientists are learning how most of the Universe’s heavy metals, like silver, gold, platinum and uranium, are generated. Without metals, life (as we know it) can not exist.

For the first time, in August 2017, two neutron stars were directly observed colliding with one another and collapsing into a black hole. The event occurred 130 million light years away. Astronomers at the Laser Interferometer Gravitational-Wave Observatories (LIGO) in the United States and the Virgo Interferometer in Italy detected gravitational waves, ripples in the fabric of spacetime caused by the birth of a black hole, emitting from a pair of merging neutron stars.

Keep reading... Show less
NASA.

Physicists are facing a matter/antimatter conundrum: they can’t find a good reason to explain why the universe actually exists.

It sounds like a classic episode of classic Star Trek when someone inexplicably shuts down the warp engines, some imminent threat looms, and — right on cue — Scotty says: “Captain, I canna’ change the laws of physics.”

Keep reading... Show less

At some point each of us needs to decide what happens to our remains after we die.

A British company called Ascension Flights, established by two graduates from the University of Sheffield, United Kingdom, have launched a unique business based on the most unexpected of concepts. Ascension Flights will hurl the remains of your loved ones into space.

Keep reading... Show less

Physicists from CERN, the world's leading physics research center, have finally achieved a long held goal in quantum physics: being able to see and measure antimatter atoms. Antimatter must exist according to laws of physics, but is notoriously difficult to measure and study.

Antimatter—particles with opposite charge, but otherwise identical to, and paired with, particles of regular matter—may sound like a science-fiction concept, but physicists believe it’s a fundamental product of the Big Bang, which occurred 13.7 billion years ago. Makoto C. Fujiwara, head of particle physics at TRIUMF, Canada’s national laboratory for particle and nuclear physics, and a collaborator at CERN tells Second Nexus, “Physicists believe that anti-matter and matter are created in pairs, but we can’t find any antimatter in the universe in any substantial quantities.”

Keep reading... Show less

[DIGEST: Phys.org, Los Angeles Times, Space.com]

When Hungarian theoretical particle physicists detected a radioactive decay anomaly in a series of experiments, they published a paper in 2015 suggesting those anomalies pointed to the existence of dark photons. These theoretical force carriers have never been detected, and might indicate unseen dark matter (so-called because it neither absorbs nor emits light, and so is impossible to detect directly) – which could help researchers understand why the universe is filled with dark matter. Or maybe, said a group of American physicists who reviewed the Hungarians’ research in 2016, this is actually the signature of a fifth fundamental force.

Keep reading... Show less