Neutron star collison.

We are made of star stuff. With the exception of hydrogen and some helium, all the elements that we know and are made of were forged in the hot cores of giant stars billions of years ago. This includes carbon, nitrogen, oxygen and iron. Now, scientists are learning how most of the Universe’s heavy metals, like silver, gold, platinum and uranium, are generated. Without metals, life (as we know it) can not exist.

For the first time, in August 2017, two neutron stars were directly observed colliding with one another and collapsing into a black hole. The event occurred 130 million light years away. Astronomers at the Laser Interferometer Gravitational-Wave Observatories (LIGO) in the United States and the Virgo Interferometer in Italy detected gravitational waves, ripples in the fabric of spacetime caused by the birth of a black hole, emitting from a pair of merging neutron stars.

Keep reading...

[DIGEST: GizmodoPBS, APS Physics]

There is renewed chatter among physicists about a long-awaited discovery that may come some time this year: the observation of gravity waves. The anticipation is like the lead up to the release of The Force Awakens, but for high energy physicists rather than Star Wars fans. What might happen and what will it mean? And the stakes are high. If we can detect gravity waves, we can open the door to new theories about the fundamental nature of the Universe.

Keep reading...