Categories: Science

STUDY: Human’s ‘Last Universal Common Ancestor’ May Have Lived Between 3.8 and 4.1 Billion Years Ago

A question that has long dogged scientists is when did life first emerge on Earth? The answer to this question will provide context and insight to our understanding of how life developed and evolved over time on this planet. This conjures up the iconic scene from Star Trek: The Next Generation, when the Q entity transports Captain Picard to prehistoric Earth, riddled with intense volcanic activity. He points to a slimy, green puddle and says “this is you…right here, life is about to form on this planet for the very first time…the building blocks of what you call

life…everything you know, your entire civilization, it all begins right here in this little pond of goo.”

Moreover, it will aid in our ongoing search for life beyond Earth.

To put it into context, Earth formed approximately 4.5 billion years ago, and until recently, it was believed that life emerged on this planet just prior to 3.7 billion years ago. Many estimates for the genesis of life on Earth have been proposed over the years, but as researchers amass new evidence, that number continues to be revised to a date closer and closer to the formation of Earth. Now, new findings are forcing another revision; this time indicating that the point at which life first developed on this planet dates back

100 million years earlier than previously believed.

This is an extraordinary claim since it would put the origin of life on Earth in close proximity to when the Earth first coalesced; a time when the planetary environment has been postulated to be quite hostile to advent of primordial organisms.

Pinning down the precise time that life began on Earth has proven difficult. Just three years ago, a group of chemists suggested that the carbon isotope ratios detected in graphite samples that had been collected from zircon found in Western Australia inferred that the carbon was processed inside living organisms. They based that assertion on the fact that the enzymes found in cellular life that fix inorganic carbon tend to use carbon-12, which is why a high carbon-12 to carbon-13 ratio is frequently cited as an “indicator of life.” The zircon samples were determined to be 4.1 billion years old and the graphite trapped inside was believed to be older than that. Therefore, if the carbon ratios are indicative of life, this finding would
force the estimated emergence of life back approximately 300 million years from the time period that was generally accepted in 2015.

Earlier this year, researchers discovered a fossil of what appears to be a fragment of seaweed dated to be from 1.6 billion years ago, which forced scientists to consider that multicellular life might have evolved on Earth about 1 billion years earlier than previously believed. Those earlier estimates were based on recovered fossils that originated 600 million years ago. That revised time period seemed incongruous with evidence suggesting that the

oxygen levels at that point in Earth’s history were too low to support the development of complex multicellular lifeforms.

These two studies clearly show that the evidence being amassed pushes the inception of life on Earth back further and further in time. The most recent report continues that trend, suggesting a much earlier date for the origin of the first seeds of life on this planet. Validating these discoveries has been difficult given the fragmented nature of the fossil record and the fact that upon re-examination many of the oldest fossils have been shown to be nothing more than crystals.

A team of scientists dedicated to the search for the “last universal common ancestor” (or LUCA) published results in Nature Ecology and Evolution that point to LUCA’s emergence at a date prior to the “late heavy bombardment” (or LHB) or what is also described by some as the “lunar cataclysm,” which took place between 3.8 to 4.1 billion years ago.

What would constitute fledgling life? Biologists have posited that it would likely be a cluster of microscopic cells that would be the progenitors for the current three, possibly four, existing domains of life. Others have proposed that life may have originated first as a series of pre-cellular replicative molecules. These prototypic molecules, likely the predecessors of nucleotides and amino acids, were distinctive in their ability to undergo template-driven propagation from monomers to polymers (

ScienceDaily). Such a model will be difficult to prove given that these chemicals would not be represented in the fossil record.

Load more...

Page: 1 2

Paul Lawrence

Dr. Paul Lawrence is a research scientist specializing in molecular genetics and microbiology, who currently serves as the Director of Bioscience Research and Product Development for a next generation skincare company called Biocogent ( He has authored more than 15 research manuscripts and scientific review articles as well as a virology textbook chapter. He has previously worked for the federal government and the pharmaceutical industry.