• Categories
  • Archives

A New Clue About Past Life on Mars

Mars

[DIGEST: NASA, Space.com]

Mars’s atmosphere is mostly carbon dioxide; however, NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) has now detected atomic oxygen in Mars’s atmosphere, providing a clue to Mars’s energy cycle and its potential for life. Atomic oxygen is a single oxygen atom, unlike the oxygen (O2) breathed by humans, which contains two. Atomic oxygen reacts and bonds with other elements more easily than O2, so it is extremely difficult to detect. NASA’s Mariner and Viking missions measured atomic oxygen on Mars in the 1970s, but it has not been studied since; this marks the first time that scientists have been able to observe atomic oxygen from afar. 

Atomic oxygen is difficult to measure partly because it doesn’t stick around for long, but also because it can only be observed in far-infrared light. Because SOFIA is a telescope on an airplane, it is able to fly above 85% of the water vapor in the Earth’s atmosphere, detecting the infrared light that the atmosphere would otherwise block.

Mars
The Stratospheric Observatory for Infrared Astronomy (SOFIA) observatory, a flying telescope aboard a Boeing 747 jet, taking off. Credit: NASA.

“Atomic oxygen in the Martian atmosphere is notoriously difficult to measure,” said Pamela Marcum, SOFIA project scientist. “To observe the far-infrared wavelengths needed to detect atomic oxygen, researchers must be above the majority of Earth’s atmosphere and use highly sensitive instruments, in this case a spectrometer. SOFIA provides both capabilities.”

Atomic oxygen is produced on Mars when ultraviolet radiation from space hits water on the surface of Mars, splitting it into two hydrogen atoms and one oxygen atom. The hydrogen is released into space, but the oxygen mingles in Mars’s atmosphere. Mars has ice caps two miles thick, frozen ponds at the bottoms of craters, and even flowing water on its surface. In its past, it likely had even more water, and thus even more atomic oxygen. In its most recent

To read more, please continue to page 2.

Page 1 of 2
First | Prev | 1 | 2 | Next | Last
View All

Tags:

  • Leah Crane is a Chicago-based freelance science writer and editor primarily covering physics and space. She really, ​*really*​ loves space and tweets about it at @DownHereOnEarth. She holds a BA in Physics from Carleton College and is currently working as an editorial intern at SpaceNews while seeking continuing employment in science communication.

    • Show Comments